Jamie the programmer

[SQLD 이론/IT 자격증] Part 1 - 데이터 모델링 : [01] 데이터 모델링의 이해 본문

IT 자격증/SQLD

[SQLD 이론/IT 자격증] Part 1 - 데이터 모델링 : [01] 데이터 모델링의 이해

jamie91 2025. 2. 24. 10:02
Contents 접기

 

1. 데이터 모델링

  • 데이터 모델링은 현실세계를 데이터베이스로 표현하기 위해서 추상화한다.
  • 데이터 모델링을 하기 위해서는 고객과의 의사소통을 통해 고객의 업무 프로세스를 이해해야 한다.
  • 고객의 업무 프로세스를 이해하면, 데이터 모델링 표기법을 사용해서 모델링을 한다.
  • 데이터 모델링은 복잡하지 않도록 모델링을 해서 고객이 쉽게 이해할 수 있어야 한다.
  • 데이터 모델링은 고객의 업무 프로세스를 추상화하고, 소프트웨어를 분석 및 설계하면서 점점 더 상세해진다.
  • 데이터 모델링은 고객의 비즈니스 프로세스를 이해하고 비즈니스 프로세스의 규칙을 정의한다.
  • 정의된 비즈니스 규칙을 데이터 모델로 표현한다.

 

2. 데이터 모델링의 특징

  1. 추상화(Abstraction)
    • 데이터 모델링은 추상화해야 한다.
    • 추상화는 공통적인 특징을 찾고 간략하게 표현한다.
    • 현실세계를 간략하게 표현한다.
  2. 단순화(Simplification)
    • 데이터 모델링은 단순화해야 한다.
    • 복잡한 문제를 피하고 누구나 이해할 수 있게 표현한다.
  3. 명확성(Clarity)
    • 데이터 모델링은 명확해야 한다.
    • 의미적 해석이 모호하지 않고 명확하게 해석되어야 한다.
    • 명확하게 의미가 해석되어야 하고 한 가지 의미를 가져야 한다.

 

3. 데이터 모델링 단계

  1. 개념적 모델링(Conceptual Data Modeling)
    • 고객의 비즈니스 프로세스를 분석하고 업무 전체에 대해서 데이터 모델링을 수행한다.
    • 복잡하게 표현하지 않고 중요한 부분을 위주로 모델링 하는 단계이다.
    • 업무관점에서 모델링하며 기술적인 용어는 가급적 사용하지 않는다.
    • 전사적 관점에서 기업의 데이터를 모델링한다.
    • 추상화 수준이 가장 높은 수준의 모델링이다.
    • 계층형 데이터 모델, 네트워크 모델, 관계형 모델에 관계없이 업무 측면에서 모델링을 한다.
  2. 논리적 모델링(Logical Data Modeling)
    • 개념적 모델링을 논리적 모델링으로 변환하는 작업이다.
    • 식별자를 도출하고 필요한 모든 릴레이션을 정의한다.
    • 정규화를 수행해서 데이터 모델의 독립성을 확보한다.
    • 특정 데이터베이스 모델에 종속한다.
    • 식별자를 정의하고 관계, 속성 등을 모두 표현한다.
    • 정규화를 통해서 재사용성을 높인다.
  3. 물리적 모델링(Physical Modeling)
    • 데이터베이스를 실제 구축한다.
    • 즉, 테이블, 인덱스, 함수 등을 생성한다.
    • 구축할 데이터베이스 관리 시스템에 테이블, 인덱스 등을 생성하는 단계이다.
    • 성능, 보안, 가용성을 고려하여 데이터베이스를 구축한다.

 

데이터 모델링 관점

  1. 데이터
    • 비즈니스 프로세스에서 사용되는 데이터를 의미한다.
    • 구조 분석, 정적 분석
  2. 프로세스
    • 비즈니스 프로세스에서 수행하는 작업을 의미한다.
    • 시나리오 분석, 도메인 분석, 동적 분석
  3. 데이터와 프로세스
    • 프로세스와 데이터 간의 관계를 의미한다.
    • CRUD(Create, Read, Update, Delete) 분석

 

4. 데이터 모델링을 위한 ERD

(Entity Relationship Diagram)
  • 1976년 피터첸(Peter Chen)이 Entity Relationship Model 표기법을 만들었으며 데이터 모델링의 사실상 표준으로 사용되고 있다.
  • 엔터티와 언터티 간의 관계를 정의하는 모델링 방법이다.

ERD 작성 절차

  1. 엔터티를 도출하고 그린다.
  2. 엔터티를 배치한다.
  3. 엔터티 간의 관계를 설정한다.
  4. 관계명을 서술한다.
  5. 관계 참여도를 표현한다.
  6. 관계의 필수 여부를 표현한다.

ERD 작성 시 고려사항

  • 중요한 엔터티를 가급적 왼쪽 상단에 배치한다.
  • ERD는 이해가 쉬워야 하고 너무 복잡하지 않아야 한다.

 

5. 데이터 모델링 고려사항

  1. 데이터 모델의 독립성
    • 독립성이 확보된 모델은 고객의 업무 변화에 능동적으로 대응할 수 있다.
    • 독립성을 확보하기 위해서는 중복된 데이터를 제거해야 한다.
    • 데이터 중복을 제거하는 방법이 바로 정규화이다.
  2. 고객 요구사항의 표현
    • 데이터 모델링으로 고객과 데이터 모델러 간에 의사소통을 할 수 있어야 함으로, 고객의 요구사항을 너무 복잡하지 않게 표현한다.
    • 요구사항을 간결하고 명확하게 표현해야 한다.
  3. 데이터 품질 확보
    • 데이터베이스 구축 시에 데이터 표준을 정의하고 표준 준수율을 관리해야 한다.
    • 데이터 표준을 확보해야 데이터 품질을 향상시킬 수 있다.

 
 
 

 
 
 
 
 
 
 
 

728x90
반응형